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Initialize

‡ Spell check off

In[141]:=
SetOptions@ArrayPlot, ColorFunction Ø "GrayTones", DataReversed Ø True,

Frame Ø False, AspectRatio Ø Automatic, Mesh Ø False,
PixelConstrained Ø True, ImageSize Ø SmallD;

SetOptions@ListPlot, ImageSize Ø SmallD;
SetOptions@Plot, ImageSize Ø SmallD;
SetOptions@DensityPlot, ImageSize Ø Small, ColorFunction Ø GrayLevelD;
nbinfo = NotebookInformation@EvaluationNotebook@DD;
dir =
H"FileName" ê. nbinfo ê. FrontEnd`FileName@d_List, nam_, ___D ß

ToFileName@dDL;

In[146]:=
Off@General::spell1D;

Outline

Last time: Continue with discussion of the two views of the function of early visual 
coding

‡ Oriented filters: efficient coding vs. Edge/bar detection

--Efficient coding means fewer bits required to encode image

Examples: PCA->dimension reduction->quantization. Decorrelates filter outputs. Filters localized in space and 
spatial frequency do too (e.g. wavelets).

Sparseness--high kurtosis histograms for filter outputs

--Edge/bar detection: local image measurements that correlate well with useful surface properties



‡ Problems with edge detection

Noise & scale

Various scene causes can give rise to identical image intensity gradients

--no local information to "disambiguate" an edge

Today

‡ Next homework

Mathematica Demonstrations

Mathematica Demonstrations Illusions

‡ Retina to V1 review

‡ Extrastriate cortex--overview

‡ Scenes from images, scene-based modeling of images

Retina to V1: Review of form & function
(There are a number of web-based overviews, for example: http://www.sumanasinc.com/webcontent/anisamples/neurobiol-
ogy/visualpathways.html).

Overview of pathways from eye-to-cortex
Roughly ten million retinal measurements are sent to the brain each second, where they are processed by some billion 
cortical neurons.

The primate retina has about 10^7 cones that send visual signals to the  optic nerve via about 10^6 ganglion cells.  The 
optic nerves from the  two eyes meet at the optic chiasm where about half of the fibers cross over and  the other half 
remain on the same side of the underside of the brain. Before  synapsing in the lateral geniculate nucleus, about 20% of 
these fibers that  make up the optic tract branch off to the superior colliculus--a structure  involved with eye movements. 
Other fibers project to various other nuclei, but the majority of the optic tract fibers  synapse on cells in the lateral genicu-
late nucleus. Cells in the lateral  geniculate nucleus send their axons in a bundle called the optic radiation  to layer IV (one 
of six layers) of primary visual cortex.  A schematic representation of these pathways was shown in notes for an earlier 
lecture.
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Retina
Much research has gone into understanding how gross behavioral sensitivity to contrast and spatial detail can be under-
stood from retinal processing. 

‡ Spatial filtering

Earlier we noted that retinal ganglion cells have a characteristic center-surround organization with excitatory centers and 
inhibitory surrounds (or inhibitory centers and excitatory surrounds). We modeled the spatial output of the retina as a 
linear filter that convolves the input image with a kernel determined by the center-surround receptive field weights--a so-
called single channel model, because the kernel is assumed to be the same shape and size at different locations. The spatial 
frequency bandpass characteristics of the retina are determined by just one kernel.

The left figure shows contrast thresholds for various light levels (from van Nes, & Bouman, M. A. (1967). Spatio modulation 
transfer in the human eye. J Opt Soc Am, 57(3), 401-406). The right figure is a replot of the left figure from: Atick, J. J., & 
Redlich, A. N. (1992). What does the retina know about natural scenes? Neural Computation, 4(2), 196-210. The solid lines 
show fits  by Atick & Redlich based on an efficient coding model.

The retina's temporal processing can also be thought of as differentiation, but in time rather than space, and can be mod-
eled as a band-pass temporal frequency filter (see Enroth-Cugell and Robson, 1966). Analogous to the spatial frequency 
selectivity,  retinal ganglion cells pass the contrast of medium temporal frequencies more effectively than either low or 
high frequencies. For a retinal ganglion cell, contrast sensitivity as a function of temporal frequency is an inverted U, 
qualitatively similar to the spatial CSF. Humans are insensitive to temporal frequencies higher than the temporal cut-off 
(for humans about 50-80 Hz, depending on the mean light level). That is why TV frames (60 Hz interlaced) or computer 
displays (now usually >70 Hz) are not seen to be flickering. An extreme consequence of the low temporal frequency 
attenuation, is that an image that is held stationary on the retina dissappears.  A VLSI retina having similar spatial and 
temporal filtering properties  was first built at Caltech by Mead and colleagues in the late 1980s (Mead, 1989). 

At the retina, one begins to see evidence for multiple visual pathways for spatio-temporal information. In cats, 
ganglion X-cells have smaller receptive fields and poorer temporal resolution than Y-cells, suggesting that the X channel 
carries information important for fine spatial detail, and the Y-cell channel conveys coarse-scale spatial information 
quickly. There is a similar distinction in primates, the, so-called magno-cellular (homologous to Y-cells) and parvo-
cellular (homologous to X-cells) cells and pathways.

‡ Temporal filtering

Human temporal contrast sensitivity functions.
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But there may be much more to the information processing functions of the retina: Gollisch, T., & Meister, M. (2010). Eye 
Smarter than Scientists Believed: Neural Computations in Circuits of the Retina. Neuron, 65(2), 150–164. 
doi:10.1016/j.neuron.2009.12.009

Functions of the Chiasm and LGN
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Figure on right from: Petros, T. J., Rebsam, A., & Mason, C. A. (2008). Retinal Axon Growth at the Optic Chiasm: To 
Cross or Not to Cross. Annual Review of Neuroscience, 31(1), 295–315. doi:10.1146/annurev.neuro.31.060407.125609

The optic chiasm routes neuronal information so that information  from corresponding points on the left and right eyes can 
come together at cortex for binocular vision, and in particular stereo vision.  Typically animals with frontal vision have 
significant fraction of fibers that do not cross the midline, and animals with  lateral eyes (e.g. fish) have few or no 
uncrossed fibers. In primates, the nervous system has gone to considerable length  to bring information from the two eyes 
together early on. This suggests that certain kinds of cortical computations cannot easily be done "remotely", but require 
close connectivity between neurons, and the resulting topographic maps. 

The neurons of lateral geniculate nucleus do more band-pass filtering,  and the cells are characterized by fairly symmetri-
cal center-surround  organization like the ganglion cells. They show even less response to uniform  illumination than 
ganglion cells. Despite the fact that neurons from the two  eyes exist within the same nucleus, no binocular neurons are 
found in LGN.  We have to wait until cortex to see binocular neurons. The X- and Y-cell division of labor continues with 
the so-called parvocellular (with corresponding retina input from P cells in monkeys, or X cells in cats), and the magnocel-
lular (Y cells or M cells) pathways. Again the experimental measurements are consistent with the idea the the M pathway 
carries a fast, but coarse spatial representation of the image to the cortex, while the P pathway carries finer spatial detail 
but more slowly.

Although the LGN is  often considered a relay station,  feedback from cortex suggests possible role of attention mecha-
nisms (see Crick, 1984 for  a speculative neural network theory of  LGN and reticular function; Mumford, 1991; Sillito et 
al., 1994).  Although we will bypass a treatment of the superior colliculus, it has an important role is in the control of eye 
movements--a highly non-trivial  problem requiring coordination of head and eye movements in the context of  a con-
stantly changing environment. 

14.ScenesfromImages.nb 5



Anatomy and physiology of primary visual cortex
Neurons in the LGN send their axons (the optic radiation) to synapse on layer IV neurons of the  primary visual cortex 
(also known as area 17 in cat, striate cortex or V1in monkeys and humans).  Cortex is  anatomically structured in layers, 
numbered from I (superficial) to VI  (deep). The striate cortex is laid out as non-linear topographic map with 80%  of 
cortical   area devoted to about 20% of visual field, reflecting the higher  acuity of foveal vision. Because of the cross-over 
at the optic chiasm, the  left visual field (right retina) maps to right hemisphere. In monkey, many of the neurons in layer 
IV have receptive field properties similar to those in LGN.  However, in striking contrast with  receptive field characteris-
tics of earlier neurons, most cortical cells (other layers of V1) show:

• orientation selectivity

• spatial frequency selectivity, some with quite narrow tuning

• spatial phase selectivity (simple cells)

• binocularity

• motion selectivity

Apart from the spatial frequency selectivity, these properties were discovered in large part by the work over a couple of 
decades by Hubel, D. H., & Wiesel, T. N. (see 1968 reference). Hubel and Wiesel won the Nobel prize for this work. 
Below is a version of an earlier demonstration of local spatial filters tuned to spatial frequency and orientation. 
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‡ Receptive field structure

Figures from Kandel & Schwartz

There are two main types of cells. The simple cells are roughly linear except for  rectification, are spatially and 
temporally band-pass, and show spatial phase  sensitivity. A first approximation model for simple cell response firing rate 
(in impulses/sec) is:

sHw.gL, where g is the image vector, w the receptive field weighting function, and s(·) is a rectifying function (e.g 
If[#>0,#,0]&). 

Both the psychophysical and neurophysiological data could be accounted for, in part,  by assuming the visual system  
performs a quasi-Fourier analysis of the image, the exact form determined by the receptive field weighting function w. 

We've seen how one possible model assumes that the visual system computes the coefficients (or spectrum) of an 
image with respect to the following basis set, called a Gabor set (Daugman, 1988). The set {wi} is modeled as: 

{e
-
Jx2+y2N

2s2 cos(2p( fx x + fy y + f))}, where iØ( fx, fy,f). 

We will return to a more detailed discussion of the receptive field models of simple cells later in the section of functions of 
the visual cortex. The half-wave rectification operation, s,  sets negative values to zero, and is linear for positive values. 
The spectrum coefficients are represented by the firing rates of cells whose receptive field weights are represented by the 
above basis functions. In actuality, because simple cells behave more like linear filters followed by half-wave rectification, 
there should be two cells for each coefficient-- "on" and "off" cells). One difference between this basis set, and the Fourier 
basis set (i.e. the optical eigenfunctions) is that this set has a local spatial restriction because of the Gaussian envelope. A 
second difference, which has major implications for computation, is that the basis functions are, in general, not orthogonal. 
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We will return to a more detailed discussion of the receptive field models of simple cells later in the section of functions of 
the visual cortex. The half-wave rectification operation, s,  sets negative values to zero, and is linear for positive values. 
The spectrum coefficients are represented by the firing rates of cells whose receptive field weights are represented by the 
above basis functions. In actuality, because simple cells behave more like linear filters followed by half-wave rectification, 
there should be two cells for each coefficient-- "on" and "off" cells). One difference between this basis set, and the Fourier 
basis set (i.e. the optical eigenfunctions) is that this set has a local spatial restriction because of the Gaussian envelope. A 
second difference, which has major implications for computation, is that the basis functions are, in general, not orthogonal. 

You can view the demonstration either as a stimulus to test responses in cortical cells, or view it as a representation of the 
effective spatial weights of the underlying linear neural model that could account for the neuron's selectivities. If you open 
the phase slider, you can play a movie that also illustrates motion direction selectivity.

Clear[Grating,kern, GratingPatch];
Grating[x_,y_,fx_,fy_,phase_] := Cos[(2.0 Pi (fx x + fy y) + phase)];
GratingPatch[x_,y_,fx_,fy_,sig_,phase_] := Exp[-((x)^2 + (y)^2)/(2*sig^2)]*Grating[x,y,fx,fy,phase];
kern[fx_, fy_, sig_,phase_] := 
  Table[GratingPatch[x, y, fx, fy, sig,phase], {x, -1, 1, .05}, {y, -1, 1, .05}];
  Manipulate[
GraphicsRow[{
ArrayPlot[kern[fr*Cos[theta], fr*Sin[theta],sig,phase]]}],{{fr,1,"radial frequency"},.1,2},
{{theta,.4,"orientation"},0,Pi},{{sig,.4,"envelope width"},.001,1},{{phase,0,"phase"},.0,2*Pi}]

Out[160]=

radial frequency

orientation

envelope width

phase

The second major class of neurons is that of complex  cells. Like simple cells, complex cells are spatially and  
temporally  band-pass, show orientation and motion direction selectivity, but are insensitive to  the phase of a stimulus 
such as a sine-wave grating. Rather than half-wave rectification, they show full-wave rectification. A model for complex 
cells would resemble the sum of the outputs of several  subunits positioned at several nearby spatial locations. Each 
subunit would resemble  simple cell with a linear spatial filter followed by a threshold non-linearity. One way of obtaining 
the phase insensitivity would be to use subunits with cosine and sine phase receptive fields. The motion selectivity could 
be built in with appropriate inhibitory connections between subunits. Full-wave rectification could be built with subunit 
pairs that have excitatory and inhibitory receptive fields centers. 

Both simple and complex cells show contrast normalization--an important feature not included in the above simple model. 
For a discussion of models of simple and complex cells, see: Heeger, D. J. (1991). Nonlinear model of neural responses in 
cat visual cortex. In M. &. M. Landy A. (Ed.), Computational Models of Visual Processing (pp. 119-133). Cambridge, 
Massachusetts: M.I.T. Press.

A third class of cells are the end-stopped  (or "hyper-complex") cells  that have an optimal orientation for a bar or 
edge stimulus, but fire most actively if the bar or edge terminates within the receptive field, rather than extending beyond 
it. It has been suggested that these cells act as "curvature" detectors. (Dobbins, A., Zucker, S. W., & Cynader, M. S., 1987).

But things aren't as necessarily as neat as they at first seem. "Hyper-complex" is seen as less of class, and instead 
cells can show "end-stopping". Further,  see: Melcher and Ringach (2002) for a discussion of the simple/complex cell 
distinction.
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The second major class of neurons is that of complex  cells. Like simple cells, complex cells are spatially and  
temporally  band-pass, show orientation and motion direction selectivity, but are insensitive to  the phase of a stimulus 
such as a sine-wave grating. Rather than half-wave rectification, they show full-wave rectification. A model for complex 
cells would resemble the sum of the outputs of several  subunits positioned at several nearby spatial locations. Each 
subunit would resemble  simple cell with a linear spatial filter followed by a threshold non-linearity. One way of obtaining 
the phase insensitivity would be to use subunits with cosine and sine phase receptive fields. The motion selectivity could 
be built in with appropriate inhibitory connections between subunits. Full-wave rectification could be built with subunit 
pairs that have excitatory and inhibitory receptive fields centers. 

Both simple and complex cells show contrast normalization--an important feature not included in the above simple model. 
For a discussion of models of simple and complex cells, see: Heeger, D. J. (1991). Nonlinear model of neural responses in 
cat visual cortex. In M. &. M. Landy A. (Ed.), Computational Models of Visual Processing (pp. 119-133). Cambridge, 
Massachusetts: M.I.T. Press.

A third class of cells are the end-stopped  (or "hyper-complex") cells  that have an optimal orientation for a bar or 
edge stimulus, but fire most actively if the bar or edge terminates within the receptive field, rather than extending beyond 
it. It has been suggested that these cells act as "curvature" detectors. (Dobbins, A., Zucker, S. W., & Cynader, M. S., 1987).

But things aren't as necessarily as neat as they at first seem. "Hyper-complex" is seen as less of class, and instead 
cells can show "end-stopping". Further,  see: Melcher and Ringach (2002) for a discussion of the simple/complex cell 
distinction.

‡ Columnar structure

In the cortex, we see for the first time binocular cells. The cells of the primary cortex  are organized into columns running 
roughly perpendicular to the surface in which  cells tend to have the same orientation preference and degree of binocular-
ity. A  "hypercolumn" is a group of columns spanning all orientations and both eyes

The receptive field organization of cortical cells is modifiable by experience. A number of models of self-organizing 
neural  networks have been developed to account for this (Von der Malsburg, 1973;  Bienenstock et al., 1982; Kohonen, 
1981; and Linsker, 1988). Below we consider how efficient coding of natural image predicts how receptive field structure 
(Olshausen and Field, 1996; 2004).
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The receptive field organization of cortical cells is modifiable by experience. A number of models of self-organizing 
neural  networks have been developed to account for this (Von der Malsburg, 1973;  Bienenstock et al., 1982; Kohonen, 
1981; and Linsker, 1988). Below we consider how efficient coding of natural image predicts how receptive field structure 
(Olshausen and Field, 1996; 2004).

Embedded in the cortical hypercolumns  are cytochrome oxidase blobs in which are found opponent color cells that seem 
to lack strong orientation selectivity  (Livingstone, M. S., & Hubel, D. H., 1984;  Livingstone, M. S., & Hubel, D. H., 
1987).

Functions of Primary Cortex

‡ Local measurements

Basic idea:

V1 cortical cells measure local orientation-specific image contrast differences, that are correlated with spatial 
changes in surface/object depth, material (texture) and view-object and object-object changes (motion). Our challenge in 
the second half of the course will be to understand how local measurements can be used for global inference--e.g. as in 
object recognition.

‡ Spatial frequency/orientation filtering: Psychophysics and physiology

Earlier, we looked at the psychophysical evidence for spatial frequency filtering in the experiment of Campbell 
and Robson, and the evidence for scale-invariance of the filters in the ideal-observer experiments. These studies represent 
a small fraction of the psychophysics that has explored the properties of spatial frequency channels in human vision. Both 
adaptation and masking studies have also been used to infer properties of human spatial filters. The results of masking, 
adaptation, and other psychophysical studies of spatial and orientation frequency selectivity in human vision are surpris-
ingly consistent in suggesting the basic form for a cortical basis set for images. 

A discrete basis set model leaves several free parameters. Most models of detection and masking get by with about 
6 spatial frequencies, about 12 orientations (specified by the ratio of horizontal and vertical spatial frequencies), and two 
phases (cosine and sine) at each retinal location. A subset of neurons representing a particular spatial frequency bandwidth  
makes up a spatial frequency channel. (Although there is neurophysiological evidence for pairs of V1 neurons having 
receptive fields with 90 deg phase shifted relative to each other, there is evidence against absolute phase--i.e. there is not a 
predominance of edge or bar type receptive fields. See Field and Tolhurst). One parameter still left unspecified is the 
standard deviation or spread of the Gaussian envelope. If large, this basis set approaches that of regular and  global Fourier 
analysis. The psychophysical data suggest that the standard deviation be such that the Gaussian envelope is about one 
cycle (at the 1/e point) of the sine wave. One cycle corresponds to about 1.5 octaves spatial frequency bandwidth (an 
octave measure of width is: log to the base two of the ratio of the high to low frequencies.)

Why  would the visual system have such a representation that combines orientation and spatial frequency selectiv-
ity? We have seen two types of explanations. One is that  encoding over multiple spatial scales is important for subsequent 
processing  that may involve edge detection, texture measurements, or stereoscopic matching, and so forth.  Analogous 
pyramid schemes have been developed for computer vision. (See Adelson, E. H., Simoncelli, E., & Hingorani, R., 1987). 
The second explanation is in terms of economical or efficient encoding which we return to below (Simoncelli and 
Olshausen, 1999).

‡ Stereo, or disparity measurements

As mentioned earlier, primary cortex brings together information  from the two eyes in single neurons. This 
information is important for coordinated eye movements and stereo  vision. Stereovision depends on the slight image 
differences, called disparities, that occur as a consequence of the two eyes having different views of the 3D world. Cells 
can be binocular without being sensitive to disparity. Although V1 cells are predominantly binocular, it was at first 
thought that disparity selectivity did not arise until V2 (Hubel and Wiesel, 1970). However, there is evidence for disparity 
selective cells in V1 and V2 (Poggio, G., F., & Poggio, T. ,1984). Disparity selectivity is a trivial task for single bar 
stimulus (in a uniform background), and it wasn't until relatively recently that neurons were found that effectively solve 
the problem of false matching (Poggio and Talbot, 1981). One possible algorithm for stereo vision is discussed here: 
Poggio, T. (1984). Vision by Man and Machine. Scientific American, 250, 106-115. Stereo vision has received a lot of 
attention in both computer and biological vision over the past several decades (Cumming, B. G., & DeAngelis, G. C. , 
2001).
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As mentioned earlier, primary cortex brings together information  from the two eyes in single neurons. This 
information is important for coordinated eye movements and stereo  vision. Stereovision depends on the slight image 
differences, called disparities, that occur as a consequence of the two eyes having different views of the 3D world. Cells 
can be binocular without being sensitive to disparity. Although V1 cells are predominantly binocular, it was at first 
thought that disparity selectivity did not arise until V2 (Hubel and Wiesel, 1970). However, there is evidence for disparity 
selective cells in V1 and V2 (Poggio, G., F., & Poggio, T. ,1984). Disparity selectivity is a trivial task for single bar 
stimulus (in a uniform background), and it wasn't until relatively recently that neurons were found that effectively solve 
the problem of false matching (Poggio and Talbot, 1981). One possible algorithm for stereo vision is discussed here: 
Poggio, T. (1984). Vision by Man and Machine. Scientific American, 250, 106-115. Stereo vision has received a lot of 
attention in both computer and biological vision over the past several decades (Cumming, B. G., & DeAngelis, G. C. , 
2001).

‡ Motion measurements

The directional selectivity of cells in  striate cortex provide a form of early motion detection, akin to that described for 
invertebrate and rabbit peripheral vision. This detection  is only local and  thus ambiguous. Cells early in visual processing 
suffer from the "aperture problem", and further computation is  required to disambiguate object motion. Cortical cells are 
also selective for speed (Orban et al., 1983).

Both the motion selectivity and  binocularity are consistent with our intuition of  linking information likely  to have a 
single environmental cause. We can add to that the the information should be in a formate that is useful for  subsequent 
extra-striate processing. We will return to the computational theory of motion detection later.

In summary, basic image processing functions from eye to cortex are:
Retina

Spatio-temporal filtering attenuates low frequencies, wavelength/color coding

Chiasm

Begins grouping information from nearby points in the world to nearby anatomical locations. 

Lateral geniculate nucleus (LGN)

More spatio-temporal filtering. Groups, but doesn't combine information from two eyes.

Primary visual cortex (V1, striate, 17)

Brings together local image measurements

--information that belongs together because of probable common cause

columnar structure

binocular vision and stereopsis

motion

edge & bar detectors

Spatial filtering by: Simple, complex, end-stopped cells

Why spatial filtering?

cortical basis set and efficient image representations

edge detection
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Retina

Spatio-temporal filtering attenuates low frequencies, wavelength/color coding

Chiasm

Begins grouping information from nearby points in the world to nearby anatomical locations. 

Lateral geniculate nucleus (LGN)

More spatio-temporal filtering. Groups, but doesn't combine information from two eyes.

Primary visual cortex (V1, striate, 17)

Brings together local image measurements

--information that belongs together because of probable common cause

columnar structure

binocular vision and stereopsis

motion

edge & bar detectors

Spatial filtering by: Simple, complex, end-stopped cells

Why spatial filtering?

cortical basis set and efficient image representations

edge detection

Overview of extrastriate cortex
We've seen how to model the processing of spatial visual information in V1. Thirty years ago, one might have thought that 
a thorough understanding of primary visual cortex would produce a thorough understanding of visual perception. Not so. 
Since then, neurophysiologists have shown that primate visual processing has only just begun in V1. Much of this work is 
based on studies of the macaque monkey, but in the past decade and half, scientists have used brain imaging techniques to 
distinguish visual areas in the human cortex. 

‡ Extra-striate cortex

Primary visual cortex sends visual information to many other visually sensitive cortical areas (some estimates are about 30 
visual areas in the macaque). These areas have been identified through anatomical, histological, and physiological tech-
niques with the early work by Samuel Zeki at the University of London, and David Van Essen and colleagues. Areas have 
been delineated by:

Function: physiology, neurons in different brain areas selective for different aspects of image 
inputs

Architecture: laminar cytoarchitecture (e.g. cell size,cell density, density of axons, layering, 
discovered using different kinds of stains).

Connections: anatomical connections traced using retrograde and anterograde tracers.

Topography: retinotopic maps in each of several of the early visual areas (V1, V2, V3, V4...).

Primary visual cortex has a fairly precise topographic map of the visual field--nearby points in the image map to nearby 
cells in V1. Other areas have less precise topographic maps of the visual field. 
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From Van Essen et al. 1992
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‡ Human visual areas

Left figure: From Scientific American. 
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‡ Visual hierarchy

One of the remarkable discoveries about extra-striate cortex is that these areas are organized hierarchically (See Felleman 
and Van Essen, 1991; DeYoe and Van Essen, 1988; DeYoe et al., 1994), and involve multiple parallel pathways. 
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From Wallisch, P., & Movshon, J. A. (2008). Structure and Function Come Unglued in the Visual Cortex. Neuron, 60(2), 
194–197. 

A general pattern of connectivity between areas has emerged in which one sees:

• feedforward connections from superficial layers (I, II, III) to IV

• feedback connections originating in deep (V, VI) and superficial layers and terminating in and outside 
layer IV.

Figure showing dominant feedfoward and backward connections. From: Shipp, S. (2007). Structure and function of the 
cerebral cortex. Current Biology, 17(12), R443–9. 
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Functions?
What are these extra-striate visual areas of cortex doing?  At a general level, these areas turn image information into useful 
behavior, such as recognition, visuo-motor control,  and navigation. Below we outline current views on two large-scale 
functional pathways. But it is also important to begin to look for detailed computations that extra-striate areas are doing. 
At the current time, we have only a few specific ideas, some of which we will look at in the lectures  on motion percep-
tion, and object recognition.

For example, the very large receptive fields found in extra-striate areas (e.g. MT cells can have receptive fields as 
large as 100 deg!) bring together information from distant parts of the visual field. Again, the general idea  is that  informa-
tion which likely belongs to edges at different locations on the same object is brought together.

‡ Preview of computational problems

A few computational problems can be seen by taking a generative view--how scene properties affect local measure-
ments:  

stereovision

depth change causes different feature displacements in the two eyes.

motion disambiguation

object motion in one direction produces local motion signals going in different directions

color constancy

a constant gray surface can result in different intensities at different locations due to non-constant 
illumination

object contours & regions

An object’s boundary produces a broad array of different local orientations

An object’s interior can be made of many different samples of one texture, as well as many differ-
ent textures.

The role of task--end-goals

‡ Large scale functional pathways

The flow of visual information  follows two dominant streams. In the  dorsal or  parietal stream, information flows from 
primary cortex to parietal cortex. A substream that has been studied for motion processing is: V1 <-> MT <-> MST. 

The temporal stream carries information from primary visual cortex to infero-temporal cortex. A sub-stream which 
has been studies for object recognition is:  V1 <-> V2 <-> V4 <-> IT. 
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‡ Dominant functional streams

Based on studies of the behavior of monkeys and man with  lesions, and  work using electrophysiological techniques, it is 
thought that the parietal stream has to do with navigation, and view-centered representations of the visual world. It is 
sometimes called the "where" system (Mishkin and Ungerleider, 1983). Although it may more to do with "how" (Goodale 
& Milner 1992).

The temporal stream is sometimes called the "what" system. It is believed to be important for non-viewer centered represen-
tations useful for object recognition. Form and color of objects is thought to be extracted by interacting modules in the 
temporal stream.

Current working hypotheses regarding function:

dorsal / parietal areas: e.g. V1 -> MT -> MST

"where out there?"

navigation, viewer centered representation

motion for layout, heading (MST)

...and for driving motor actions such as reaching

temporal: e.g. V1 -> V2 -> V4

"what is it?"

processing for non-viewer or object-centered representation

material color and shape & form

...and further downstream, temporal areas (IT) for object recognition
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‡ Smaller scale pathways

: >

Fig. 3. Schematic diagram of anatomical connections and neuronal selectivities of early visual areas in the macaque monkey. LGN = 
lateral geniculate nucleus (parvocellular and magnocellular divisions). Divisions of Vl and V2: blob = cytochrome oxidase blob regions; 
interblob = cytochrome oxidase--poor regions surrounding the blobs; 4B = lamina 4B; thin = thin (narrow) cytochrome oxidase strips; 
interstripe = cytochrome oxidase-poor regions between the thin and thick strips; thick = thick (wide) cytochrome oxidasestrips; V3 = 
visualarea 3; V4 = visualarea(s) 4; MT = middle temporal area. Areas V2, V3, V4, MT have connections to other areas not expficitly 
represented here. Area V3 may also receive projections from V2 interstripes or thin stripes79. Heavy lines indicate robust primary 
connections, and thin lines indicate weaker, more variable connections. Dotted fines represent observed connections that require 
additional verification. Icons: rainbow = tuned and/or opponent wavelength selectivity (incidence at least 40%); angle symbol = 
orientation selectivity(incidenceatleast 20%); spectacles = binocular disparity, pointing hand = direction of motion selectivity (incidence 
at least 20%).

The icons signify selectivity for: wavelength/color (prism wedge), binocularity (spectacles), orientation (angle), and 
motion (finger pointing) 

‡ General Extra-striate Functions

The fascinating discovery of 30+ extra-striate visual areas, together with a lack of ideas about what all of these 
modules are doing, suggests that it might be useful to step back and think about the computations that are required to 
perceive and act.

We will first focus on the idea that an intermediate goal of visual processing is to bring together local information/measure-
ments from distant parts of the visual field likely to belong to same object, or have the same cause. Our study of edge 
detection shows that local ambiguity is a major computational challenge. So we will spend time understanding how to 
integrate local ambiguous measurements to arrive at useful representations of objects and their relationships to each other 
and to the viewer. Later we will try to understand how this intermediate-level processing leads to useful actions.
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‡ Side note on terms: Low-level (early), intermediate-level (middle),  and high-level vision.

Low-level--local measurements, simple grouping procedures

Intermediate-level--surfaces and surface-like representations, more global grouping processes, objects,..

High-level--functional tasks, object recognition, navigation, reaching,...

Scene information from images
What we have learned about the brain's very early processing of image information tells us rather little about how image 
information leads to useful behavior. Most of what we have studied shows how image information is coded into other 
forms that still has more to do with the image, than with what is out there, that is, the scene. But if much as 40-50% of 
visual cortex may be involved in visual processing,  what is all this cortex for? In order to begin to answer this question, 
we ask a more general question of interest to both computer and biological vision scientists.

The role of computer vision

‡ Visual function & tasks

So far, we've primarily addressed the issue of visual input, and have by and large ignored the analysis of functional visual 
behavior. Now it is time to ask: What are the goals of vision? The  obvious answers are to gain information about the 
physical world useful for  navigating, recognizing objects and planning future actions. In the 1940’s, Kenneth Craik  
suggested that perception was a  process in which the brain constructs a model of the physical world, in much  the same 
way that in engineer builds (or perhaps simulates on a computer) a  scale model of an airplane. The purpose of such a 
model is to test hypotheses about how it would function if  actually built. This process of going from an image, which is a 
changing array  of light intensities, to a model of the environment is a problem of image  understanding. In order to gain 
an appreciation for what this process  entails, let us look at some example questions of image understanding. But it is not 
necessarily the case that a 3D representation of the world is the best preliminary step to achieve a functional goal. There 
may be more direct processing strategies that are efficient in achieving a goal. In fact, evidence from human studies of 
visual attention show that people can be surprisingly "blind" to major changes between two images. This is the so-called 
phenomenon of "change blindness".

Nevertheless, no one disputes that vision must somehow convert image input to useful output. Here are some examples.

• Given a dynamically expanding image on my retina, how long will it  be before I collide with the object produc-
ing it? Here one would like  to  estimate time-to-contact from changing light intensities. One preliminary step may be to 
estimate optic flow, that is, compute the 2D projected velocity field of the 3D surface points.  We will see later how a 
simple measure of optic flow expansion rate can be used to predict "time to contact".

• Given two slightly different  images, one in the left eye and one in  the right, what is the relative depth of  the 
various objects causing the two images? This is the problem of stereopsis.

• Given spectral, spatial and  temporal changes in the illumination falling on a particular object,  how can I  assign 
a relatively stable color to it? This is the problem of color constancy. In particular, when driving down the road, how do I 
avoid misinterpreting a large dark shadow for a turn off exit?  Without direct measurements of the incident light, it is not 
immediately  clear how to do this.   

• Given contours, shading and/or texture pattern, how I can infer the shape of the object? This is the shape-from-X 
problem, where X is a local image measurement such as shading or texture gradients or motion flow. 

These problems are so trivial for us as observers, they disguise the underlying difficulty of perception. Until the 
attempts over  the last couple of decades to develop intelligent computer vision systems, it  was not fully appreciated that 
many of the visual tasks that we as human  observers accomplish so effortlessly are profoundly difficult to reproduce  with 
a machine. We emphasized at the beginning of this course that to understand the biology and psychology of image under-
standing, one must also study the computational problems  the biological substrate supports (Marr, 1982).  

Many diverse goals suggests the importance of maintaining as much information as possible during early transmis-
sion stages perhaps through the kind of efficient coding models that we have studied. Some computer vision approaches 
have used the idea of "shared features". Succeeding stages preserve information, but with progressive selection aimed at 
the goals of the visual system. A major challenge is understanding the trade-off between selectivity and invariance in 
visual recognition (Geman, 2006).
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‡ The difficulties of developing image understanding models

What are the  difficulties of image understanding? We've already spent considerable time thinking about how image inputs 
should be represented. Two major  additional problems are:  

• What is the output and how should it be  represented?  

• How can we compute  scene-related outputs given an set of image measurements or representation? 

Although the first input to vision can be represented as light intensity as a function of space  and time, followed by 
spatial and temporal filtering,  it is not at all clear how to represent the brain's visual "output". 

One view is to model estimates of the  scene parameters causing the image, as well as the relationships between 
features or parts, and the relationships between objects.  Another (not necessarily exclusive) view is to more directly 
extract useful parameters for function (e.g. geometric shape dimensions for object recogniiton, depth relationships bewteen 
viewer and object, time-to-contact for braking, or  motor control variables for actions). 

‡ The role of scene-based image modeling

The image filtering approach can be thought of as primarily "image-based". The advantage of image-based modeling is 
that it is "closer to the input". Features are indexed spatially which makes sense given topographic representations. But as 
we begin to think about representing object properties, it may make more sense to think about indexing based on other 
measures of "closeness", such as viewpoint, or class membership. 

When we consider visual tasks, it is useful to consider generative models that are "closer to the output" of vision. At first, 
this may sound counter-intuitive, so let's see what this means.

The first step of analysis is to understand the generative model of image formation in terms of the causal structure of the 
world. Here we can gain insight from 3D computer graphics. For example, here is a model of the image L(x,y):

L(x,y)  = f(R(x,y), N(x,y), V, E)

where L is the luminance, R is the albedo (surface reflectivity), N is a  vector representation of the shape of the surface, V 
is the viewer angle, and  E describes the lighting geometry (number, type and power of  illuminants). 
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‡ The inverse 3D graphics metaphor

One way to view vision is as the  reconstruction of the scene or as the "decrypting" of the image to reveal the "message" 
that the world is sending. In this sense image understanding  is a problem in inverse optics  or ("inverse computer graph-
ics"). As an  example, the forward optics problem may specify the  luminance at each  point of a surface as a function of 
the surface's albedo, its local geometry (or  shape), the position of the viewer relative to the surface, and the lighting  
conditions:  

The inverse problem  is to take as input, L, and compute the scene causes R ,  N,  V or E. Although it is unlikely that 
human vision exactly solves the inverse graphics problem even in small domains, the metaphor is useful to make explicit 
image ambiguities and to test functional goals and constraints utilized in human perception  (Kersten, 1997). But there are 
strong limitations to the metaphor. One of them is that it doesn't make explicit the diverse set of tasks and requirements of 
flexible visual processing to accomplish those tasks.

Even if we could solve the inverse problem, how should one  represent the mental homologues of shape, material proper-
ties, lighting or the geometrical relations  between objects? For example, should depth be represented as absolute  distance, 
relative distance,  or perhaps not  metrically at all, but rather in terms of ordinal relations? Should shape be represented 
locally or globally? When is it important to compute depth, the first derivative of depth, or the second deriviative of depth? 
Each has a different utility, and the image information supporting inference can have a different relation to each. Despite 
the fact  that the representation issue is so critical to arriving at a true account of  biological visual functioning, it is often 
the most difficult to answer. Clues  have to be sought  in neurophysiological, psychophysical and computational  studies. 
We will emphasize the computational approach to these problems  and often will proceed with only a guess as to what the 
visual system is  computing, and then look at how one can get from the input data to the  desired output.

The second major problem is specifically that the image data, L(x,y,t) does not make  explicit any of the parameters 
representing the scene.

We run into two sub-problems. First, as was emphasized in the context of edge detection, any local image measurement is 
often a function of more than one cause. For example, an intensity change is a function of material and illumination 
change. Further, even when given multiple  sources of visual information (e.g. motion parallax and stereo views), one has  
to somehow combine this information to yield a unitary percept.  This combination should be done in a common 
"language", with some measure of the reliability of each source. Second, even a single cause may be ambiguous. For 
example, many 3D "wire" objects map to the same 2D line-drawing. The image data mathematically  underconstrains the 
solution--the inference or estimation problem is sometimes said to be "ill-posed". 
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The role of ideal observers & Bayesian decision theory
At the beginning of the course, we showed the advantages starting off with a formal statement of what an ideal  image 
understanding system should be doing, and then investigate the ways  in which one might approach this ideal.

An earlier lecture provided a preview of how Bayesian decision theory could be used to develop a framework for estimat-
ing scene properties from images.

In particular, the ideal observer can be modeled as a Bayesian estimator of scene parameters, given image data. E.g. the 
MAP observer would pick the most probable scene given a fixed set of image measurements based on the posterior 
probability

p(scene | image measurements)

This  formulation can be used to cast many of  image understanding problems in terms of  finding minima of high dimen-
sional "cost" or "energy" functions.  We can run into problems  with multiple minima, and it becomes difficult to find the 
right one, which in general is the lowest one. One can either improve the descent methods (e.g. simulated annealing, or 
multi-grid techniques), re-shape the topography of the cost function  appropriately, or change the representational architec-
ture of the problem .  This involves choosing the right input and output representations, and raises questions like: Should 
one use raw light intensities for input, or some other primitives like  edges or local Fourier transforms? What purpose is 
gained by 2D  preprocessing or filtering of the image? We can get some insight into these questions by  studying what is 
known about the psychology and physiology of vision. A Bayesian approach adds an additional and arguably important 
twist by placing an emphasis on the reliability of multiple sources of interacting information--a competent visual inference 
device doesn’t just proceed by passing the estimate at one stage on to the next, it should also pass information regarding 
the reliability of its estimates.  

   Choosing an efficient algorithm for  finding the right solution depends on  both the computational problem and on 
the hardware available for  implementation. We will see that neurons have limited dynamic range,  limited metabolic 
resources, limited dendritic connectivity and spread, and  so forth.  Efficiency has to be evaluated relative to both computa-
tional and  hardware constraints. 

The selection and processing of information will differ depending on task. For example, the Bayesan decision theory 
perspective is consistent with the ideas of ventral and dorsal stream processing involving mechanisms that select and 
discount information appropriate for the distinctly different tasks of extracting intrinsic object properties vs. deciding their 
spatial relationships.
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How would the computational problems of size estimation differ for the tasks of grasping an object vs. 
recognizing an object?

How does the inverse optics or graphics view differ from efficient coding?

Two cylinders lightness illusion revisited

‡ Land & McCann's "Two squares and a happening"

The left half looks lighter than the right half. But, let's plot the intensity across a horizontal line:
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The two ramps are identical...tho' not too surprising in that that is how we constructed the picture. How can we explain 
this illusion based on what we've learned so far?

We saw that one explanation is that the visual system takes a spatial derivative of the intensity profile. Recall from calcu-
lus that the  second derivative of a linear function is zero. So a second derivative should filter out the slowly changing 
linear ramp in the illusory image. We approximate the second derivative with a discrete kernel (-1,2,-1). 

The steps are: 1) take the second derivative of the image; 2) threshold out small values; 3) re-integrate

Relatively speaking, this  is computationally straightforward.

‡ "Two cylinders and no happening"

But the perceived lightness contrast for the slabs is significantly stronger than it is for the two cylinders. A spatial convolu-
tion/derivative model would predict the same for both. The spatial convolution operation won't work as an explanation! So 
what will?
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But the perceived lightness contrast for the slabs is significantly stronger than it is for the two cylinders. A spatial convolu-
tion/derivative model would predict the same for both. The spatial convolution operation won't work as an explanation! So 
what will?

‡ The inverse graphics metaphor & "the two-cylinders & no-happening"

In comparison with the image-based models of lightness  perception developed for illusions such as the Land-McCann, 
inverse optics computations  are hard.
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